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SUMMARY 
A boundary element method is proposed for studying periodic shallow water problems. The numerical model 
is based on the shallow water equation. The key feature of this method is that the boundary integral 
equations are derived using the weighted residual method and the fundamental solutions for shallow water 
wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is 
studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that 
the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical 
examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and 
plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively 
accurate solutions are obtained. 
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1. INTRODUCTION 

When constructing artificial islands or reclamation areas along the ocean side, it is important and 
necessary to predict the water quality in advance and to assess the damage of disasters such as 
tsunamis and storm surges. Numerical simulation is one of the most powerful techniques for such 
assessments, because it is advantageous for studies that have many parameters and uncertain 
variables included. 

Numerical techniques for shallow water waves have already been applied to problems such as 
tidal waves, tsunamis, storm surges and secondary waves in a harbour. Finite element and finite 
difference methods have been widely used for solving the shallow water equations.'-5 These 
methods involve some problems to be solved. To improve the accuracy of simulations, very fine 
meshes or grids are required. Therefore the CPU time becomes very long and a large memory 
capacity is necessary. The other problem is the treatment of the open boundary. It is evident that 
these techniques have limitations and must employ a large domain to include the effect of the 
infinite boundary condition approximately. For the purpose of representing the effect of the 
infinite region, several techniques to deal with the boundary of the domain have been 
proposed.6-8 
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On the other hand, numerical methods based on the boundary integral equation (boundary 
element method) have been developed for solving ocean wave problems. These methods have 
some merits for solving ocean wave problems. Firstly, it is easy to satisfy the radiation condition in 
the infinite region. Accordingly, this method has been applied to ocean wave problems which 
involve the open b ~ u n d a r y . ~  Secondly, it is simple to treat the free surface boundary because of 
discretizing only on the boundary. Therefore non-linear waves such as solitary and cnoidal waves 
have been simulated by Nakayama" and Ohyama." The response analysis of a floating body 
under regular waves has been performed for the above reasons." 

In this paper we propose a boundary element method for solving the shallow water wave 
equations. The shallow water equations are derived from the three-dimensional Navier-Stokes 
equations by integrating over the depth and assuming hydrostatic pressure. There are three 
approaches for solving such time-dependent problems: (1) a method in the frequency domain; 
(2) a method using time-dependent fundamental solutions; (3) a coupled boundary element-finite 
difference method.13 The first approach is employed in this paper from the viewpoint of 
application to open boundary problems. This approach does not require domain integrals and it is 
easy to satisfy the radiation condition. The boundary integral equations are formulated using the 
weighted residual method. The fundamental solutions are obtained by solving simultaneous 
singular differential equations by means of Fourier transformation. A formulation dealing with 
incident waves from the infinite region is put forward. Several numerical tests are presented: one 
concerns an internal problem, the wave reflection in a rectangular tank; the other involves an 
external problem, the wave diffraction due to cylindrical and plate obstructions. The performance 
characteristics of the proposed method are discussed in the light of the numerical tests. 

2. BASIC EQUATIONS 

Basic equations which satisfy the following assumptions are used: 

(a) linear shallow water wave theory (the convective term, the Coriolis force and the frictional 

(b) sinusoidal waves 
(c) water depth is constant throughout the region 
(d) water elevation is much smaller than the depth 
(e) turbulence can be expressed by the constant eddy viscosity. 

Those phenomena can be described by the momentum and continuity equations in the 
following manner. Let ui be the horizontal velocity, [ the water elevation and t i  the traction; si, [ 
and ti are the solutions of 

force are all neglected.) 

momentum equation in the region Q, 

T i j =  -grdij+ V(Ui,j  f Uj , i ) ,  

at continuity equation - + H u , , ~ = O  at in the region Q, 

boundary conditions ui = lii, ti = €i = tijnj on the boundary r, (3) 
where H is the water depth, g is the gravitational acceleration, dij is the Kronecker delta, v is the 
eddy viscosity, nj  are components of unit normals to the boundary and -denotes prescribed values 
on the boundary. 
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For the sinusoidal wave the unknown variables ui and l can be expressed in terms of time and 
space co-ordinates by the following equation: 

(4) ui = u,eiuf, ( =re'"', 

where o is the angular frequency and the amplitudes tii and ra re  defined as a function of location. 
The following equations can be obtained by substituting equation (4) into equations (1) and (2): 

i o U i  - 7.. . = 0 ,  
V J  

io%+ ~ i i ~ , ~  = 0. 

Hereafter, the overbars are neglected for simplicity of expression, 

3. BOUNDARY INTEGRAL EQUATIONS 

Two different boundary integral equations are devised to calculate the values of velocity and water 
elevation. These equations are formulated using the weighted residual method. Fundamental 
solutions are obtained by solving the simultaneous singular differential equations by means of 
Fourier transformation. 

3.1. Boundary integral equation for velocity 

manipulation: 
The following equation is obtained from equations (5) and (6) after some simple mathematical 

c 

[l:g(iwc+ H~, , , ) -u ,*~H( iou , - z~~ ,~ ) ]  dQ=O, 
Jn 

(7) 

where uti and 5: are the fundamental solutions, which show the velocity and water elevation at the 
observation point in the i-direction corresponding to a unit velocity acting in the k-direction at  the 
source point. Greeh's theorem leads to the following equation: 

In gi(ioc:+Hu:ii,i)dSZ- Hui(iou,*i-[-gl:6ij+v(u~ii,j+~~j,i)],j) dC2 

- HT,*pi dT + 
where 

T:,= [ -gi:dij+ V ( U : , , ~ +  u : ~ , ~ ) ]  n j .  

Let the fundamental solutions uti and l: satisfy the following equations, where d(x) denotes the 
Dirac delta function: 

iou,*, - C - gi: a,,+ v ( u , * ~ , ~ +  U : ~ , ~ ) ] , ~ +  d k , 6 ( x ) 6 ( y )  = 0,  

iol: + H u : , ~  = 0. 

(9) 

(10) 

Substituting equations (9) and (10) into equation (8) and using the fact that the first term is zero 
and the second term is Hui because of the character of the Dirac delta function, the boundary 
integral equation for velocity is obtained as follows: 

r r 
uk- J T,*,uidT+ 

r 
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The fundamental solutions uzi and [: are derived by solving the simultaneous singular differential 
equations (9) and (10) by means of Fourier transformation: 

where 

Here H i z )  is the nth-order Hankel function of the second kind, R is the distance between source 
and observation points, C ,  =(gH +2i0v)”~ and C ,  =(iov)”2. 

Boundary integral equation on the boundary is obtained by integrating around the point on the 
boundary and by the process E+O. In view of the singularity of the fundamental solution on the 
boundary, the boundary integral equation (1 1) is transformed as follows; 

r r 

where 

(sin 2p1 -sin 28,) 
1 c: -c;  

1 c:-c; 
271 c: 

C(P) - C(P) - (sin2 B1 -sin2 &), 12-  21--- 

(sin 28, -sin 28,) 1 c:-c;  

The angles pl and B2 are defined in Figure 1. 

Figure 1. Definition of angles 
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3.2. Boundary integral equation for water elevation 

manipulation: 
The following equation is obtained from equations (5) and (6) after some simple mathematical 

P 

[pg(io[+Hui,i)-iifH(ioui-zij,j)]d12=0, J* 
where ii,* and p show the velocity and water elevation at the observation point in the i-direction 
corresponding to a unit water elevation at the source point. Green's theorem leads to the following 
equation: 
r r 

- Jr Hf,*ui dT + Jr Hu",*ti dT = O .  (16) 

Let the fundamental solutions 12: and r;" satisfy the following equations: 
I 

iou": - [ - g[ * dij + v(u"fj + u"&) ] , j  = 0, 

i o p  + ~ i i f ~  + d(x)d(y) = 0.  

The boundary integral equation for water elevation is obtained by substituting equations (17) 
and (18) into equation (16) as 

The fundamental solutions u " f  and r;" are obtained by solving the simultaneous singular 
differential equations (17) and (18) by means of Fourier transformation: 

3.3. Boundary integral equations with consideration of incident waves 

The velocity is assumed to be the sum of the incident velocity u$')  and the scattered velocity ui": 

Ui = u I" + u 1 '  !S)  (22) 

The boundary integral equation (1 1) is decomposed into boundary integral terms both for infinite 
regions and around a body. Equation(22) is substituted into the boundary integral term for 
infinite regions to give 

T$iu$l)dT+/rm ~ ; ~ t $ ' ) d r - J ~ ~  T;iu$S)dT+/rm ~ ; ~ t i ~ ) d T = O .  

(23) 
The incident velocity u!') is the solution of equation (1 l), which is expressed as 
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The boundary integral term around a body is equal to zero by Cauchy's theorem: 

US) - srs TZi ui') dT + lrm uZi t 1') dT = 0. (25) 

The sixth and seventh terms in equation (23) are equal to zero by the radiation condition. The 
boundary integral equation for velocity with consideration of incident waves is obtained by 
substituting equation (25)  into the fourth and fifth terms: 

Here the incident velocity ui') can be expressed by the potentials (P and I) which are the solutions of 
the basic equations, because ui') is a regular function: 

where 

q=*exp(-c i o  

The water elevation is expressed by the potential as follows: 

Here the water elevation due to the velocity of incident waves can be expressed by equation (30). 
The boundary integral equation for water elevation with consideration of incident waves is 
obtained by adding equations (30) and (19) as follows: 

4. BOUNDARY ELEMENT METHOD 

It is assumed that velocity ui and traction t i  are linearly varying. The boundary is split into a 
number of linear elements. The values of ui and ti at an arbitrary point inside an element can be 
computed by employing the nodal values and linear interpolation functions such that 

(32) ui = (PaUai ,  ti = (Patai. 

The following boundary element equations are obtained by substituting equation (32) into the 
boundary integral equations (14) and (1 9): 
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uv=o 

-+ + t t + + + + + ' ?  
interior point 3 

L UY-0 depth h=10.0 

Ux=l. 0 
[m//secl 

when n is the number of linear boundary elements. The following equations are derived by 
assembling equations (33) and (34) for all nodal points to give, 

Hu=Gt, (35) 

(= a u  + c t .  (36) 
The unknown variables ui and ti on the boundary are calculated using equation(35). The 

velocity and water elevation in the domain are obtained by substituting the values ui and ti on the 
boundary into equations (35) and (36). The non-diagonal coefficients in the matrices H and G are 
integrated using Gaussian quadrature. Because the diagonal coefficients contain integrals with a 
strong singularity in the boundary integral equation on the boundary, integration is performed 
using series expansions of Hankel functions and the segment length h tends to zero. 

n 
E 

: 
" Z  

[m] q 

5. NUMERICAL TEST CASES 

Several numerical examples are carried out to validate the present method. The integral problems 
are calculated to assess the accuracy of this method. The external problems are calculated to 
investigate the possibility of application to the open boundary problem. 

5.1. Wave reflection problem in a rectangular tank 

The accuracy of the method is assessed by numerical experiments. The influence of different 
frequencies and viscosities has been studied. To improve the accuracy, discretization of boundary 
elements and different kinds of distributions of corner nodes have been tested. 

The model given in Figure 2 has been tested for the prescribed values shown in Table I for 
frequency and viscosity. Sinusoidal waves with maximum velocity whose amplitude is unity are 

CASE (a) CASE (b) CASE (c) 

Element division 

Figure 2. Test model for wave reflection problem in a rectangular tank 
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Table I. Test parameters 

Angular frequency (rad s C 1 )  0.314, 3.14, 31.4 
Eddy viscosity (mZ s - l )  
Water depth (m) 10.0 

0.1, 1.0, 10.0 

Gravitational acceleration (m s-’) 9.8 1 

0.0 0. 5 1.0 

DISTANCE (x) [m] 

Figure 3. Comparison of velocity distribution with analytical solution (w=0,314, v=O.1)  

applied on the left side wall. This case can be considered as a one-dimensional problem. For the 
sake of comparison, equations (5) and (6) are solved analytically for this particular problem. 
Therefore it becomes possible for this problem to compare the numerical result with the analytical 
solution at the nine interior points represented in Figure 2. The three cases of different divisions of 
boundary elements are illustrated in Figure 2.  The numerical results for velocity for v=O.1 and 
w=O.314 are given in Figure 3. This figure shows that the result by using the boundary element 
division of Case (c) is in good agreement with the analytical solution. 

The accuracy of the method is discussed for each type of division. The error is estimated by the 
average of the error at the nine interior points. 

Case (a): Coarse boundary element division. For the first case the boundary is divided into 30 
elements and the boundary conditions for the corner U,= V,=O are used. The computed errors 
for velocity are shown in Table 11. The error for the high-viscosity case is less than 1%. On the 
other hand, the error is considerably higher in the case of low viscosity, e.g. for v =0.1 and w =  31.4 
the error becomes 49%. To test the influence of frequency, the error for velocity is plotted against 
the logarithm of o* in Figure 4, where ihe non-dimensional frequency w* is defined as the ratio of 
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20.0 

- x 
a 
v 

i 10.0.  
w 

Table 11. Estimated error of Case (a) 

Angular frequency (rad s - ' )  
Eddy viscosity 
(mz s - l )  3 1.4159 3.14159 0.3 141 59 

CASE ( 0 )  

v 1 o Cm*/secI 
g 9 81 Lm/& 
h = 1 0 0 [ m l  

t 

I 
I 8 

j 
I 

: 

0.1 

1 .o 

10.0 

~ 

59.92" 94.58 132.97 
49.13b 22.35 42.02 

3.72 1.87 44.96 
2.33 0.49 13.37 
0.23 0.29 0.45 
0.14 0.06 0.15 

819 

a Maximum (%). 
Average ( X ) .  

0.0 
1 10 100 

w * (wave length/tank length) 

Figure 4. Plot of error versus frequency 

wave length to tank length. Figure4 indicates that the error is appreciable for high o*. It is 
noticeable that the order of error at the natural period is remarkably high. 

Case (b):  Fine boundary element division. In order to improve the accuracy, the boundary is 
divided into 120 elements. The boundary conditions for the corner are the same as in Case (a). The 
computed errors for velocity are shown in Table 111. The average error of all cases is 2.06% for 
velocity, but the error at low viscosity is still high. The CPU time is about 24 times as long as that 
for Case (a). 

Case (c): Double-corner-node procedure. It is observed that the error close to the corner is high 
in the case of both low viscosity and long period. Therefore a double-grid procedure at the corner 
of the boundary is applied to improve the accuracy. The number of elements is the same as in 
Case (a). The double-corner-node procedure is illustrated in Figure 2. The corner C is represented 
by two nodes C1 and C2 which are chosen at points infinitely close to the corner C and located on 
the boundaries AC and BC respectively. It should be noted that C1 is given to express the 
condition associated with the boundary AC, whereas C2 is given the condition on the boundary 
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Table 111. Estated error of Case (b) 

Angular frequency (rad s- I )  

Eddy viscosity 
(m2 s-  ') 3 1.41 59 3.14159 0.314159 

0.1 

1 .o 

100 

10.26 2.7 1 29.67 
8.86 0.45 8.97 

0.24 0-19 0.30 
0.15 0.04 0.11 
0.03 0.10 0.10 
0.0 1 0.0 1 0.02 

Table IV. Estimated error of Case (c) 

Angular frequency (rad s-') 
Eddy viscosity 
(m2 s -  ') 31.4159 3.14159 0.3 14159 

0.1 

1 .o 

10.0 

10.51 2.12 11.49 
8.12 1.01 2-68 
2.9 1 2.34 2.42 
2.14 1.13 1.12 
6.92 3.77 2.34 
5.53 2.84 1.06 

193, 

I W  ' 

- Analytical 

--C CASE (a) 
solution 

I 1 t C A S E ( b )  

0.4 0.2 0.0 0.2 0.4 

DlSTANCE(from corner) [ m] 

Figure 5. Traction near the corner 

BC. The computed errors are shown in Table IV. Although the element division is the same as in 
Case (a), the accuracy is remarkably improved. In particular, at low viscosity the average error is 
3.94% for velocity, which is about one-tenth of that in Case (a). However, at high viscosity the 
error becomes slightly higher than in Case (a). The reason for the improved accuracy using the 
double-corner-node procedure can be discussed as follows. The distribution of traction close to 
the corner is shown in Figure 5. For Case (c) the exact solution of the traction is distributed as a 
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step function close to the corner and has two values at the corner node. In Case (a) and Case (b), 
using the boundary conditions for the corner U,= U,,= 0, the variables such as velocity and 
traction at the corner node have only one value. Therefore in the case of an analysis which has an 
unsmooth boundary, the error increases with these boundary conditions. In particular, the error 
increases because the discrepancy becomes wider at low viscosity. In these cases it is interesting to 
note that the accuracy of the numerical solution is improved considerably by adopting the 
proposed double-corner-node procedure. The CPU time is almost the same as in Case (a). 

5.2. Wave diflraction problem 

The present method is applied to three kinds of diffraction problems due to single cylindrical, 
double cylindrical and plate obstructions. These numerical results are compared with the exact 
solution and with numerical solutions by other methods. 

(a) Single cylindrical obstruction. The diffraction problem due to a single cylindrical obstruc- 
tion is analysed. The model is shown in Figure 6. Numerical examples are calculated with respect 
to eddy viscosities of 0.1, 1.0 and 10.0. The incident wave is such that the amplitude of the water 
elevation at the centre of the cylindrical obstruction becomes 1.0. The boundary around the 
cylindrical obstruction is divided into 60 elements. The length of the boundary corresponds to the 
length of the wave. The numerical solutions are compared with the theoretical solutions for a 
perfect fluid.14 The four contours of the absolute amplitude of the water elevation are compared in 
Figure 7. It is observed that the numerical solutions are similar to the theoretical solutions. The 
distributions of the water elevation surrounding the obstruction are compared in Figure 8. It is 

incident wave 
( A = l .  0) 

Figure 6. Test model for wave diffraction problem (a) 

Theoretical solution ( y  =O. O ~ m 2 / s e c ~ )  Numerical solution ( w  = l .  O[m2/secl) 

Numerical solution ( w  =O. 1 [m2/sec3) Numerical solution ( Y =lo. O[m2/sec3) 

Figure 7. Contours of absolute amplitude of water elevation ( K R  = 1.0) 
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2.0 

Numerical SOLution Y = 1.0 x 

1.5 

W 
0 
3 

J 
k 
a 
5 
a 1.0 
z 
5 
W 

A W 
(L 

KR = 1.0, r 2 1.1R 0.51 
180 150 120 90 60 30 0 

ANGLE (degree) 

Figure 8. Comparison between numerical and theoretical wave amplitude surrounding the obstruction 

--+ p = 2 . 0 1  
i nc ident wave 
(A=1.0)  

( t :wnve length) 

Figure 9. Test model for wave diffraction problem (b) 

shown that the result by this method is close to the theoretical solution as the eddy viscosity 
becomes smaller value. 

(6)  Double cylindrical obstruction. The diffraction problem due to a double cylindrical obstruc- 
tion is analysed. The model is shown in Figure9. The boundary around each cylindrical 
obstruction is divided into 60 elements. The diameter corresponds to the length of the wave. The 
distribution of the water elevation surrounding the obstruction on the underside is compared with 
the numerical solution by Kashiyama” in Figure 10. It is observed that our result is similar to the 
numerical solution. It is concluded that this method is applicable to the wave diffraction problem 
due to one or many obstructions. 

(c) Plate obstruction. The diffraction problem due to plate obstruction is analysed. The model 
is shown in Figure 11. The boundary around the plate obstruction is divided into 38 elements. 
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3. 0 
- FEM (Kashiyama) 

v = ~ ~ [ m z / s e c l  r = :  
b The present method 

v = ~ l [ m ~ / . w c l  r -111 

w 

-180 -120 -60 0 60 120 180 

ANGLE (degree) 

Figure 10. Distribution of water elevation surrounding the obstruction on the underside 

Figure 11. Test model for wave diffraction problem (c) 

FEM ( v =O. 0 [m2/secl) The present method ( v  =O. 1 [m2/secl) 

Figure 12. Comparison between results of this method and Reference 16 ( H = O " )  

823 

Numerical examples are calculated with respect to incident waves with angles of attack of 0" and 
45" against the plate obstruction. The incident wave is such that the amplitude of the water 
elevation at the centre of plate obstruction is specified. The length of the incident wave is three 
times as long as the length of the long side of the plate. The results of this method are shown 
in Figures 12 and 13. They are compared with the numerical solution by Kawahara and 
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-0. 7 

FEM ( v =O. O[rn2/sscl) The present method ( v =O. 1 [rn2/secl) 

Figure 13. Comparison between results of this method and Reference 16 (0=4S0) 

Kashiyama.I6 It is observed that the distribution of the water elevation by our method is similar to 
that of the numerical solution. 

6. CONCLUSIONS 

A boundary element method for solving periodic shallow water wave problems is proposed in this 
paper. The boundary integral equations are formulated using the weighted residual method. The 
fundamental solutions are obtained by solving simultaneous singular differential equations by 
means of Fourier transformation. Incident waves from the infinite region are considered in this 
method. 

Several numerical tests are performed to show the validity of the method. For the first numerical 
example of an internal problem, the wave reflection problem in a rectangular tank is analysed. The 
accuracy of the method is tested by comparison with the analytical solution. As a result of this test, 
it is found that the number of element divisions and the distribution of the nodes are significant to 
the accuracy. For numerical examples of external problems, the wave diffraction problems due to 
single cylindrical, double cylindrical and plate obstructions are analysed. Relatively accurate 
solutions are obtained in these problems. It can be concluded that this method is applicable to 
practical shallow water wave problems with consideration of the open boundary condition. 
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